n→π^*\dagger* Interactions of Amides and Thioamides: Implications for Protein Stability

Robert W. Newberry, ‡ Brett VanVeller, ‡ Ilia A. Guzei, ‡ and Ronald T. Raines* ‡ ‡

‡ Department of Chemistry and ‡ Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States

ABSTRACT: Carbonyl—carbonyl interactions between adjacent backbone amides have been implicated in the conformational stability of proteins. By combining experimental and computational approaches, we show that relevant amide carbonyl groups associate through an *n→π*^*\dagger* donor—acceptor interaction with an energy of at least 0.27 kcal/mol. The *n→π*^*\dagger* interaction between two thioamides is 3-fold stronger than between two oxoamides due to increased overlap and reduced energy difference between the donor and acceptor orbitals. This result suggests that backbone thioamide incorporation could stabilize protein structures. Finally, we demonstrate that intimate carbonyl interactions are described more completely as donor—acceptor orbital interactions rather than dipole—dipole interactions.

Protein architecture is mediated by a suite of noncovalent interactions within and between polypeptide chains, including the hydrophobic effect, hydrogen bonding, Coulombic interactions, and van der Waals interactions. ¹ We have put forth an *n→π*^*\dagger* interaction as an additional means by which peptide bonds themselves interact. ² In this *n→π*^*\dagger* interaction, a carbonyl oxygen donates lone pair (n) electron density into another carbonyl group (Figure 1). Such donation occurs when the donor and acceptor form a short contact along the Bürgi–Dunitz trajectory for nucleophilic addition. ³ These interactions have been implicated in many systems, including small molecules, ⁴ peptides, ⁵ proteins, ⁶ peptoids, ⁷ and nucleic acids. ⁸

We and others have used a torsion balance in a proline model system to characterize energetic relationships of importance to peptide and protein structure (Figure 2). ⁹,¹⁰,¹¹,¹² Both the cis and trans isomers of the N-acetyl proline peptide bond are populated at room temperature and can be distinguished by NMR spectroscopy due to their slow interconversion. As the *n→π*^*\dagger* interaction is only possible in the trans isomer, the ratio of isomers (K_{trans/cis}) reports on the energy of the interaction. All previous studies employed esters as the *n→π*^*\dagger* acceptor (1); because esters are more electrophilic than the amides found in proteins, those studies overestimated the strength of *n→π*^*\dagger* interactions at 0.7 kcal/mol. ²,⁹ Hence, we sought to determine the energy of a prototypical *n→π*^*\dagger* interaction between two amides. Primary and secondary amides can both donate hydrogen bonds to the acetyl group, obscuring the *n→π*^*\dagger* interaction in our analysis; ¹¹ thus, we elected to examine the tertiary dimethyl amide (3).

In D₂O, the value of K_{trans/cis} for amide 3, like that for ester 1, is greater than unity (Figure 3A). We then employed density functional theory (DFT) calculations at the B3LYP/6-311+G(2d,p) level of theory with natural bond orbital (NBO) analysis to estimate the energy of the *n→π*^*\dagger* interaction. ¹² We optimized the geometry of 3 in both the C'-endo and C'-exo puckers of its pyrrolidine ring (Figure 4) and found the corresponding *n→π*^*\dagger* energies to be 0.14 and 0.53 kcal/mol, respectively. At room temperature, proline exists ~66% in the endo pucker and ~34% in the exo pucker. ²b Based on this ratio, we estimate the energy of the *n→π*^*\dagger* interaction in 3 to be *E*__{n→π^*\dagger*} = 0.27 kcal/mol (Figure 3B). This interaction is weaker than that in 1, which is consistent with the lower electrophilicity of the amide acceptor relative to the ester. Importantly, because the tertiary amide is less electrophilic and more sterically encumbered than the secondary amides common in proteins, the values we report here are likely to underestimate the energy of an *n→π*^*\dagger* interaction between most peptide

Received: April 4, 2013
Published: May 10, 2013
Communication

increased the value of acceptors of the synthesized carbonyl groups due to (3C), providing a rational basis for the value of (Figure 3A). Interestingly, whereas replacing the acceptor of con being lower than that for oxygen congener. This has been predicted only computationally. Hence, we proteins. Still, the quality of a thioamide as an acceptor of con interact with an ester carbonyl (Figure 3A). This increase donation to an ester carbonyl (Figure 3A). This increase from second-order perturbation theory, the energy released by the mixing of two orbitals is proportional to the reciprocal of the energy gap between those orbitals. Thus, though a thioamide acceptor overlaps less with an n→π* donor (Figure 3C), a smaller energy gap between the donor and acceptor can produce more effective orbital mixing and a stronger interaction overall. The consequences are apparent in thioamide 6, in which the n→π* interaction is particularly strong at 0.88 kcal/mol (Figure 3B), demonstrating that pairs of thioamides engage in significantly stronger n→π* interactions than do pairs of analogues amides.

As the n→π* interaction populates the π* orbital of the acceptor, it induces pyramidalization of the acceptor toward the donor (Figure 4C). This distortion is detectable by X-ray diffraction analysis and can provide a signature of n→π* interactions in small molecules and peptides. Hence, we conducted X-ray diffraction analysis of crystalline 4–6 to search for this signature of an n→π* interaction. Thioamide 4 crystallized as its cis isomer and therefore does not show an n→π* interaction, leaving the acceptor nearly planar (Table 1). Thioamides 5 and 6 both crystallized as their trans isomer, with 6 crystallizing in both pyrrolidine ring puckers. In both 5 and 6, the acceptor carbon is pyramidalized toward the donor significantly more than in 4, denoting a stronger n→π* interaction. In addition, pyramidalization of the acceptor in both conformations of 6 is greater than in 5, which is consistent with the stronger n→π* interaction in 6. Moreover, the greater pyramidalization of the acceptor in 6-endo than in 6-exo confirms that the exo ring pucker of proline promotes stronger n→π* interactions. Indeed, the pyramidalization in 6-exo is among the largest observed to date in this proline model system. These observations are also consistent with the pyramidalization in crystal structures of thioamide-containing peptides (see: Figure S1).

These data further establish the quantum mechanical nature of intimate carbonyl–carbonyl interactions. Some have argued that these interactions are primarily dipolar in nature. The dipole moment of an amide is greater than that of an ester, so if a dipolar interaction is dominant, replacing the ester of 1 with the amide in 3 should cause an increase in Ktrans/cis, which is contrary to observation (Figure 3A). Moreover, as a thioamide has a still larger dipole moment than an amide, a dipolar origin would predict a larger value of Ktrans/cis in thioamide 5 than in amide 3. That was not observed in our experiments. Finally, in a dipolar interaction, neither of the participating groups has a defined role; rather, they interact symmetrically. Thus, if intimate carbonyl interactions are dipolar in nature, then substituting either amide with a thioamide should have a comparable effect on Ktrans/cis. The conformational preferences

Table 1. Conformational Parameters of Thioamidesa

<table>
<thead>
<tr>
<th>compound</th>
<th>conformation</th>
<th>d (Å)</th>
<th>θ (deg)</th>
<th>Δ (Å)</th>
<th>Θ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>cis, endo</td>
<td>4.6158(14)</td>
<td>66.96(7)</td>
<td>0.0035(14)</td>
<td>0.43(17)</td>
</tr>
<tr>
<td>5</td>
<td>trans, endo</td>
<td>3.2529(12)</td>
<td>92.19(4)</td>
<td>0.0237(8)</td>
<td>2.61(9)</td>
</tr>
<tr>
<td>6</td>
<td>trans, endo</td>
<td>3.4248(16)</td>
<td>96.11(6)</td>
<td>0.0243(17)</td>
<td>2.70(19)</td>
</tr>
<tr>
<td>6</td>
<td>trans, exo</td>
<td>3.2433(15)</td>
<td>101.92(7)</td>
<td>0.0392(16)</td>
<td>4.36(18)</td>
</tr>
</tbody>
</table>

aFrom X-ray diffraction analysis of the crystalline compound. Parameters are defined in Figure 4.

Figure 3. (A) Values of Ktrans/cis for compounds 1–6 in D2O at 25 °C. (B) Energy of n→π* interactions in 1–6 from second-order perturbation theory. (C) Overlap integrals between the n and π* orbitals of 3–6. Data for esters 1 and 2 are from ref 9.

Figure 4. (A) C7-endo and (B) C7-exo pyrrolidine ring pucker of compounds 1–6. (C) Parameters that denote pyramidalization of carbonyl groups due to n→π* donation.
of 4 and 5 suggest otherwise: substituting the $n \rightarrow \pi^*$ donor amide with a thioamide increases $K_{\text{trans/cis}}$, whereas replacing the acceptor decreases $K_{\text{trans/cis}}$. These data affirm that a dipolar mechanism is insufficient to describe intimate interactions between carbonyl groups. Instead, the data are more consistent with an electronic donor–acceptor effect like the $n \rightarrow \pi^*$ interaction.

Individual $n \rightarrow \pi^*$ interactions between amides are relatively weak. In abundance, however, they could make a significant contribution to the conformational stability of a protein. We note another implication as well. Shifts in the equilibrium between α-helices and β-sheets have been implicated in amyloid fibrillogenesis. Hydrogen bonding, which is operative in both α-helices and β-sheets, is unlikely to affect this equilibrium decisively. In contrast, $n \rightarrow \pi^*$ interactions are common in α-helices but not β-sheets, and thus could play a critical role in the maintenance of protein homeostasis. In addition, our finding that the $n \rightarrow \pi^*$ interaction between two thioamides is 3-fold stronger than that between two amides (Figure 3B) encourages efforts to exploit thioamides to enhance conformational stability in peptides and proteins. Finally, as these interactions are not included in conventional field models, we argue that accounting for the $n \rightarrow \pi^*$ interaction could improve the accuracy of computational investigations of proteins.

ASSOCIATED CONTENT

Supporting Information

Synthetic and analytical procedures, and computational data on compounds 3–6. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

rtraines@wisc.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to Brian Dolinar (University of Wisconsin—Madison) for technical assistance and to Amit Choudhary (Harvard University) and Grant Krow (Temple University) for contributive discussions. R.W.N. was supported by NIH Biotechnology Training Grant T32 GM08349. This work was supported by grants R01 AR044276 (NIH) and CHE-1124944 (NSF). High-performance computing was supported by grant CHE-0840494 (NSF).

REFERENCES

(23) For example, the absolute values of the φ and ψ dihedral angles for 6-endo (−77°,161°) and 6-exo (−70°,149°) are similar to those for proline residues in the Xaa (−75°,164°) and Yaa (−60°,152) position, respectively, of a collagen triple helix (Berisio, R.; Vitagliano, L.; Mazzarella, L.; Zagari, A. *Protein Sci.* 2002, 11, 262–270).